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Abstract

First, a variational formulation for fluid–shell coupling is presented. Subsequently new waveguide finite elements for

fluid and fluid–shell coupling are derived from this formulation. Together with previously derived elements, modelling

thin-walled shells, equations for pipes and ducts with arbitrary cross-sections may be formulated. Two examples, one pipe

and one duct, are presented together with dispersion curves for the respective case.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Analyses of the wave motion in fluid-filled ducts and pipes is important both for studying acoustic energy
propagation and radiation. Generally a wave is propagating both in the fluid and in the structure. The
coupling between the fluid and the shell is thus of great importance. For lightly coupled systems
fluid–structure coupling may be simplified, but often fully coupled systems must be considered.

For pipes, ‘circular ducts’, the circular symmetry may be utilized by using a trigonometric dependence with
respect to the circumferential coordinate. Then, for fluid-filled pipes, results may be obtained as presented by,
e.g., Fuller and Fahy [1] or Finnveden [2] and in simplified form by Pavić [3].

For arbitrary cross-sections more general methods are required. One method, based on slices of ordinary
finite elements has been used by Maess et al. [4] for deriving dispersion relations for fluid-filled pipes. With this
method, discrete equations are devised by conventional finite element models which subsequently are post-
processed.

In this paper another generic method for obtaining equations describing waves for fully coupled pipes and
ducts with arbitrary cross-sections is presented. This method is here referred to as the waveguide finite element
(WFE) method. The resulting equations may be used to give dispersion relations as shown in this paper. But
also calculations of group velocities [5], response of infinite pipes or ducts [6] and coupling to ordinary finite
elements [7] are within the scope of the method.

The WFE technique has previously been used to obtain system equations for several different cases,
including orthotropic solids [8], fully anisotropic solids, [9], fluid–shell systems [10,11], fluids with stationary
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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flow, [12], thin-walled-shells [13] and prestressed anisotropic shells [14]. The prerequisites of the WFE-method
is to assume constant properties along one direction. The properties with respect to the cross-section geometry
is then modelled with finite elements. Upon this basis follows a system of coupled equations for propagation
along the waveguide. Wave-solutions with respect to the direction of propagation, for arbitrary cross-sectional
geometry are consequently found from a polynomial eigenproblem, as discussed in Section 6 of this paper.

Here it should be recognized that elements derived by Astley et al. [10,11], also describe waves in fluid–shell
coupled systems, and thus are quite similar to those presented here. However, the current method differs in
some respects. The most important of these is that the shell (or more precisely plate–strip) elements used here
include in-plane motion. Such in-plane motion is necessary to describe low order bending waves of the entire
structure. In-plane motion of the shell is also needed for the ‘breathing’ motion in pipes, see e.g. Ref. [1], and
similarly in-plane motion in flat–oval ducts, as discussed by Cummings [15].

Shell elements similar to those used here were first introduced by Gavric [13]. To better capture the coupling
between in-plane and out-of-plane motion, quadratic interpolation of the in-plane motion is used instead of
linear interpolation. Also a ‘trick’ employed in Ref. [13] to make the resulting, undamped, eigenproblem real
valued is not considered here. Instead the presented formulation gives complex Hermitian eigenproblems for
undamped shells.

The fluid motion is here treated in terms of the fluid’s velocity potential rather than the pressure. This yields
a ‘gyroscopic’ coupled system which enables an orthogonal basis of eigenvectors for the expanded system to be
found as discussed in Ref. [14, Chapter 1]. For simplicity, the fluid elements presented here are linear
triangular since these elements are more flexible in meshing surfaces with complex geometry and tools for
automatic meshing of arbitrary areas are readily available. The main drawback of this choice is a slower rate
of convergence. Finally, the elements presented here are given both in a ‘weak form’ and a ‘strong form’,
which should enable future implementation of ‘Super Spectral Elements’ derived from the models presented
here, see Ref. [7].

The ‘finite slice’ method, or discrete waveguide FE method, used by Maess et al. [4] has attracted some
attention recently, e.g. Refs. [16,17]. An advantage with this method is that existing conventional FE programs
can be used and there is no need for new element formulations. A disadvantage is that the method is affected
by numerical problems such as ill-conditioning and round-of errors [18]. Some of these numerical problems
are avoided with the waveguide FEM advocated in this article, as it provides continuous equations in the
direction along the waveguide. The method, however, requires new finite elements and the major contribution
of the present article is two new elements that greatly increases the class of structures for which the method can
be used.

The presented work is subdivided as follows. A variational formulation for fluid–shell coupling is derived.
Subsequently, waveguide finite elements for plate-strips, fluids and fluid–shell coupling are presented. Then
dispersion curves for two examples are given. First, a water-filled steel pipe is considered. For this pipe a
validation with a method presented in Ref. [2] is made. Second, dispersion curves for a water-filled steel duct
with dimensions according to the EN 10219 standard for hollow steel profiles, see e.g. Ref. [19], are presented
and discussed.

2. Variational description of fluid–shell coupling

Formulations describing a structures coupling to a fluid which is described with a fluid potential is presented
in e.g. Refs. [20,21]. The method presented here has been used in Ref. [2] and has the advantages of describing
the undamped coupled system with Hermitian matrices and also making the matrix proportional to the
squared frequency positive definite. The following short derivation of this coupling is more straightforward
than that in Ref. [2].

Consider harmonic motion of the form, eiot, where o is the angular frequency and t is the time. For a fluid
surrounded by a shell, a modified version of Hamilton’s principle, [22, Chapter 1], may then be written as

dðUf � Tf Þ � dW f ¼ 0, (1)

where d symbolizes first variation. Uf is the potential and Tf is the kinetic energy in the fluid. dW f symbolizes
the virtual work on the fluid. The corresponding equation for the shell is equivalent to Eq. (1) except for a
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change of indices ‘s’, referring to the shell instead of ‘f ’, referring to the fluid. Thus,

dðUs � TsÞ � dW s ¼ 0, (2)

where Us is the potential and Ts is the kinetic energy in the shell and dW s symbolizes the virtual work on the
shell. For the purpose of this paper the virtual work in each case is solely due to the coupling between the fluid
and the shell. Now, any functional defined by a linear combination of Eqs. (1) and (2) defines a functional for
the combined system. Here, Eq. (2) is subtracted from Eq. (1). This choice has some useful properties
elaborated in Section 6. The result may be written as

dLs þ dLf þ dBc ¼ 0, (3)

where

dLs ¼ dðUs � TsÞ (4)

is a bilinear functional for the shell

dLf ¼ �dðUf � Tf Þ (5)

is a bilinear functional for the fluid and

dBc ¼ dW f � dW s (6)

is a functional representing the boundary coupling. dLs is used in the derivation of the shell elements.
dLf is used in the derivation of the fluid elements and dBc is used for deriving the fluid–shell coupling
elements.

Details of the boundary coupling term, dBc, are explored in the following. To begin, the virtual work on the
shell from the fluid is given by

dW s ¼

Z
S

dw�pdS, (7)

where dw, is the virtual displacement of the shell out of the fluid, � denotes complex conjugate, S is the wetted
surface of the fluid shell boundary and p is the fluid pressure. Correspondingly, the virtual work on the fluid
from the shell is given by

dW f ¼ �

Z
S

dp�wdS. (8)

Energy flow into the shell is defined to be positive by Eq. (7). The energy flow into the fluid is opposite to that
into the shell, which explains the minus sign in Eq. (8). For the acoustic wave equation the fluid velocity is
written in terms of a velocity potential, c, see Ref. [23]. Consequently,

io uf ¼ �rc, (9)

where uf is the fluid particle displacement. In terms of this velocity potential, the pressure is given by

p ¼ iorf c, (10)

where rf is the fluid density at equilibrium. Hence, the coupling term, dBc is written as

dBc ¼ io
Z

S

rf ðdc
�w� dw�cÞdS. (11)

Eq. (11) is used in Section 5 for deriving fluid–shell coupling waveguide finite elements.

3. Plate-strip elements

Plate-strip elements can be used to build up complex shaped shell structures. The derivation of the
plate-strip elements used here is shortly treated in the following. More thorough analysis may be found in
Refs. [5,14]. Similar elements have been reported in Refs. [13,24,7].
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Fig. 1. Plate-strip element.
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Consider a plate strip with displacements u; v and w and a rotation f as shown in Fig. 1. Such plate strips
may be used to build up shell structures with arbitrary cross-sectional geometry. Hence, they may alternatively
be referred to as shell elements.
3.1. First variation of potential energy

For a thin isotropic plate, the first variation of the potential energy in the frequency domain may be
written as

dU ¼

Z
S

½deH dkH �½D�
e

K

� �
dS, (12)

where H denotes complex conjugate transpose and

½D� ¼
h

1� n2

D1

h2

12
D1

2
64

3
75, (13)

½D1� ¼

E nE 0

nE E 0

0 0 ð1� n2ÞG

2
64

3
75. (14)

E denotes Young’s modulus, n denotes Poisson’s ratio, G ¼ E=2ð1þ nÞ is the shear modulus and h is the
thickness of the plate.

e is the in-plane strain at the neutral layer of the plate strips and K is the curvature of the plate strip relative
to its undeformed state. These strains and curvatures are related to the displacements through,

e ¼

qu

qx
qv

qy

qu

qy
þ

qv

qx

2
66666664

3
77777775

and K ¼

�
q2w

qx2

�
q2w

qy2

�2
q2w

qxqy

2
666666664

3
777777775
. (15)
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3.2. First variation of kinetic energy

The first variation of the kinetic energy in the frequency domain is written as

dTs ¼ o2

Z
S

½du� dv� dw��½Ms�

u

v

w

2
64

3
75dS, (16)

where

½Ms� ¼

m00

m00

m00

2
64

3
75 (17)

and m00 is the mass per unit area of the shell.

3.3. Shape function approximations

The elements used here approximate the out-of-plane motion with third degree polynomial shape-functions
whereas second degree polynomials are used for the in-plane motion. Thus the displacements are
approximated as

u ¼ NT
p ðWÞûðxÞ; du� ¼ dûðxÞHNpðWÞ, (18)

v ¼ NT
p ðWÞv̂ðxÞ; dv� ¼ dv̂ðxÞHNpðWÞ, (19)

w ¼ NT
b ðWÞŵðxÞ; dw� ¼ dŵðxÞHNbðWÞ, (20)

where

û ¼ ½û1 û2 û3�
T; v̂ ¼ ½v̂1 v̂2 v̂3�

T; ŵ ¼ ½ŵ1 f̂1 ŵ2 f̂2�
T, (21)

dû ¼ ½dû1 dû2 dû3�
T; dv̂ ¼ ½dv̂1 dv̂2 dv̂3�

T; dŵ ¼ ½dŵ1 df̂1 dŵ2 df̂2�
T. (22)

The sub-indices, 1 and 2 indicate the values of the displacements, u; v;w, or rotations f along the respective
node-line as shown in Fig. 1. The sub-index 3 refers to an internal ‘bubble’ degree of freedom associated with a
quadratic shape-function, similar to that described by Cook [25, p. 178]. The shape-functions are given by

NpðWÞ ¼

1

2
ð1� WÞ

1

2
ð1þ WÞ

ð1� W2Þ

2
666664

3
777775 and NbðWÞ ¼

1

4
ð2� 3Wþ W3Þ

a

4
ð1� W� W2 þ W3Þ

1

4
ð2þ 3W� W3Þ

a

4
ð�1� Wþ W2 þ W3Þ

2
6666666664

3
7777777775
, (23)

where W ¼ y=a in the local coordinate system shown in Fig. 1. The above displacement assumptions are
inserted into Eqs. (12) and (16) after which the integration over the width of the shell is calculated. The
resulting approximation of dLs for the element is written as

dLs �

Z X2
k¼0

X2
l¼0

qkdŴ
H

qk
akl

qlŴ

qxl
� o2dŴ

H
m2Ŵdx, (24)

where

Ŵ ¼ ½û
T

v̂
T

ŵ
T
�T (25)
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and

dŴ ¼ ½dûT dv̂T dŵT
�T. (26)

4. Fluid elements

Taking the first variation of expressions for Uf and Tf in the frequency domain gives a bilinear
functional for the fluid. For the acoustic wave equation these expressions may by found in e.g. Ref. [23].
The result is

dLf ¼

Z
rfrdc

H
rc� o2

rf

c2f
dc�cdV , (27)

where H denotes complex conjugate transpose and cf is the fluid sound speed for plane waves. In the
following, the coefficients rf and cf are considered to be constant within each waveguide finite element.

The cross-sections of the fluid elements are chosen to be triangular and the velocity potential approximation
over an element’s cross-section is linear. Finite elements with these properties are common, see for
instance Ref. [25, Chapter 5]. The advantage with this type of triangular element is that meshing software,
such as the MATLAB pde-toolbox, utilized here, is readily available and easily meshes arbitrary
cross-sectional shapes. Furthermore, the element type is simple and well proven. The main drawback of the
elements is their slow convergence to exact solutions due to a coarse approximation by the linear shape
approximation space.
4.1. Triangular coordinates and shape-functions

The cross-section of a single element is seen in Fig. 2. Triangular coordinates, xi for i ¼ 1; 2; 3; are defined as
the ratios between the triangle sub-areas, A1, A2, A3 and the total area, A, see also Ref. [25]. Thus,

xi ¼
Ai

A
, (28)

where

A ¼ A1 þ A2 þ A3. (29)

The triangular elements relation to the global coordinate system is seen in Fig. 3.
The values of c at the node-lines 1, 2 and 3 in Fig. 2 are denoted by ĉi, i ¼ 1; 2; 3. With linear interpolation,

the value of c at any point within the element is given by

c ¼ NT
f ŵðxÞ, (30)
A2
A1

A31

2

3

Fig. 2. Triangle coordinates.
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where

Nf ¼

x1
x2
x3

2
64

3
75 and ŵðxÞ ¼

ĉ1ðxÞ

ĉ2ðxÞ

ĉ3ðxÞ

2
664

3
775. (31)
4.2. Element formulation

By using the shape-functions defined by Eqs. (30) and (31) the approximations,Z
rdc�rcdV ¼

ZZ
dŵ

H qNf

qy

qNT
f

@y
ŵþ dŵ

H qNf

@z

qNT
f

@z
ŵdAdx

þ

ZZ
qdŵ

H

qx
Nf N

T
f

qŵ
qx

dAdx ð32Þ

and Z
dc�cdV ¼

ZZ
dŵ

H
Nf N

T
f ŵdAdx (33)

follow. Exact expressions for differentiation and integration of polynomials in triangular coordinates are given
in Ref. [25, Chapter 5]. These expressions now give,

dLf ¼ rf

Z
dŵ

H
b11ŵþ

qdŵ
H

qx
b00

qŵ
qx
� o2dŵ

H
n2ŵdx, (34)

where the matrices b11, b00 and n2 are given by

b00 ¼ ðABBTÞ, (35)

b11 ¼

Z
Nf N

T
f dA (36)

and

n2 ¼
1

c2f
b11. (37)
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The matrix B is evaluated as,

B ¼
qNf

qz

qNf

qy

� �
¼

1

2A

ðy2 � y3Þ ðz3 � z2Þ

ðy3 � y1Þ ðz1 � z3Þ

ðy1 � y2Þ ðz2 � z1Þ

2
64

3
75, (38)

where zi and yi, i ¼ 1; 2; 3; are the coordinates of node i and A is the total area of the triangular cross-section.

5. Coupling element

5.1. Shape functions for plate strip

The shape functions for the plate strip is given in Section 3.3. The only displacement that couples to the fluid
is the out of plane motion w given by Eq. (20).

5.2. Shape functions for fluid

Let the surface between node-line 1 and node-line 2 of a fluid element wet a shell element. The triangular
coordinates x1 and x2 vary linearly over this surface. Hence, the fluid velocity potential is also interpolated by
the shape functions,

c ¼ ½12ð1� WÞ 1
2ð1þ WÞ�

ĉ1ðzÞ

ĉ2ðzÞ

" #
¼ NT

p ðWÞŵ. (39)

Hence, the shape functions for ĉ along the wetted surface may be written with the same coordinate, W, as the
out of plane displacement. The integration required from Eq. (11) can thus easily be made.

5.3. Coupling element formulation

With the interpolations for c and w described in the previous sections, the sought coupling element is
given by

dBfc ¼ io
Z
½dŵ

H
dŵH
�m1

ŵ

ŵ

" #
dx, (40)

where

m1 ¼ rf

0 I3

�IT3 0

" #
, (41)

where 0 is a zero matrix and the integral,

I3 ¼ a

Z þ1
�1

NpðWÞNT
b ðWÞdW, (42)

where a is half the width of the elements of the wetted surface.

6. Equation for wave solutions

Straight but otherwise arbitrary shaped waveguides are modelled by assembling several waveguide finite
elements. The assembling procedure sets degrees of freedom of shared node-lines of adjacent elements equal,
and is treated in text-books on finite elements.

The assembling here is made for the plate model such that element matrices a00 are assembled into a matrix
A00, likewise the fluid element matrices b00 form a matrix B00. These two matrices are then used as diagonal



ARTICLE IN PRESS
C.-M. Nilsson, S. Finnveden / Journal of Sound and Vibration 310 (2008) 58–7666
blocks in the matrix

C00 ¼
B00 0

0 A00

" #
. (43)

In the same manner, other matrices Ckl for k and l ¼ 0; 1; 2 and the matrix M2 can be formed. If there are no
corresponding element matrices the blocks will be zero. Finally, the coupling element matrices m1 forms the
antisymmetric coupling matrix M1.

After assembling waveguide finite elements for the fluid, the shell and the fluid–shell coupling, an
approximation of Eq. (3) for a shell structure with contained fluid is given byZ X2

k¼0

X2
l¼0

qkdÛ
H

qxk
Ckl

qlÛ

qxl
þ iodÛ

H
M1Û� o2dÛ

H
M2Ûdx ¼ 0. (44)

where the vector ÛðxÞ contains the degrees of freedom in the assembled fluid–shell system. Here, Eq. (44) is
termed the ‘weak form’ of the system equation.

Thus, by setting M1 ¼ 0, two separate models emerge, for the fluid and shell systems, respectively. Rigid
boundary conditions are then fulfilled for the fluid system. Also there is no distributed pressure acting on the
shell system when M1 ¼ 0.

By repeated integration by parts of Eq. (44), while neglecting the natural boundary terms, and subsequent
usage of the calculus of variations, the weak form is transformed into, what may be referred to as, the ‘strong

form’ of the system equation,

X4
j¼0

Kj
qj

qxj
þ ioM1 � o2M2

" #
Û ¼ 0, (45)

where

Kj ¼
X2
k¼0

ðð�1Þj�kCðj�kÞkÞ; kpjp4. (46)

For the straight elements utilized here Eq. (46) gives,

K0 ¼ C00, ð47Þ

K1 ¼ C01 � C10, ð48Þ

K2 ¼ C02 þ C20 � C11, ð49Þ

K3 ¼ 0 ð50Þ

and

K4 ¼ C22. (51)

It may be noted that in contrast to previous work by Astley et al. [10,11], the matrix K1a0, since in-plane
motion in the shell is included here.

In the absence of damping and external forces, propagating wave solutions are given as

Û ¼ ~Ue�ikx, (52)

Inserting this into Eq. (45) gives the eigenvalue problem,

½KðkÞ þ ioM1 � o2M2�Û ¼ 0, (53)

where

KðkÞ ¼
X4
j¼0

Kjð�ikÞ
j . (54)
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Eq. (53) is a ‘twin valued’ eigenproblem with solutions either for a known frequency, o, or for a known
wavenumber, k. For either problem, Eq. (53) is expanded to a larger system before the eigenproblem is solved,
see e.g. Ref. [26]. For a system with N degrees of freedom the known-frequency problem yields up to
4N solutions, whereas the known-wavenumber problem yields 2N solutions. If no coupling is included,
M1 ¼ 0, and o can be solved from an ordinary generalized eigenproblem.

Propagating waves are often of larger importance than decaying waves. If only propagating waves are
sought, the formulation given by Eq. (53) is in a convenient form in that KðkÞ is Hermitian and positive
definite (except from possible rigid body motions for k ¼ 0). Furthermore ioM1 is Hermitian and M2 is real
symmetric and positive definite. A system with these characteristics may be denoted as ‘gyroscopic’ and the
system may be linearized into an Hermitian system, which also has the advantage of having orthogonal
eigenvectors, see Ref. [14, Chapter 1].

In the following, dispersion curves are given for a water-filled steel pipe and for a water-filled steel duct.

7. Examples

7.1. Fluid-filled steel pipe

Equations for fluid-filled pipes with full coupling between the fluid and the shell are found in several
references, e.g. Refs. [1,3]. Here the method derived by Finnveden [2] are used to validate the presented
method. Finnveden uses trigonometric functions with respect to the circumference, for a circular pipe these
represents an exact modal decomposition. For the radial dependence high-order polynomials are used by
Finnveden. This gives a high accuracy and results from the method described in Ref. [2] with a 6th order
polynomial for the radial dependence is used as reference in the following.

The material parameters are given in Table 1. These values are chosen such that the fluid shell coupling
significantly affects both the predominantly fluid waves as well as the predominantly structural waves.

Two different meshes are used for waveguide FE models. These are seen in Fig. 4. The coarser mesh has 16
plate-strip elements and 32 fluid elements. The finer mesh has 32 plate-strip elements and 256 fluid elements.
This corresponds to a total of 121 and 337 degrees of freedom, respectively. Note that these, automatically
generated, meshes are not entirely symmetric with respect to the y and z-axes. As a result, for some of the
Table 1

Parameters used for fluid-filled pipe model

Young’s modulus E 210GPa

Poisson’s ratio n 0:3
Shell density r 7800kg=m3

Shell thickness h 5mm

Pipe radius r 0.1m

Fluid sound speed cf 1500m/s

Fluid density rf 1000kg=m3

−0.1 −0.05 0 0.05 0.1

−0.1

0

0.1

−0.1 −0.05 0 0.05 0.1

−0.1

0

0.1

Fig. 4. Meshes for fluid-filled pipe.
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dispersion relations, the waveguide FE models yield two slightly separated wavenumbers for each
wavenumber found in a perfectly symmetric pipe. Here these differences are at most 0.2% and the
frequencies tabulated in Table 2, relate to the average of each frequency pair. Frequencies in italics correspond
to predominantly fluid waves. The dispersion curves are also plotted in Fig. 5.

The frequencies written in italics in Table 2, correspond to predominantly plane fluid cross-sectional waves.
If no coupling was present, these waves would be completely plane. The wave shape in the fluid for the wave at
k ¼ 1m�1 at approximately 200Hz (from the coarse mesh model) is seen in Fig. 6. This wave shape shows an
approximately half-sine shape over the diameter. For the coarse mesh this half-wavelength is approximated
with 6 elements only. Simultaneously, the shell undergoes a simple breathing motion, approximated by 16
plate-strip elements. Since more fluid elements means more shell elements, this observation indicates that very
large systems may be needed for resolving the velocity potential in the fluid. Higher order polynomials for the
shape-functions of the fluid elements are likely to improve the convergence and hence the computational
efficiency, in such cases. This is, however, not within the scope of this paper.

7.2. Fluid-filled steel duct

As a further example of the use of the presented method, dispersion curves for a water filled steel duct are
presented. The dimensions of the duct are chosen according to the European EN 10219, standard for hollow
steel profiles. The mesh used for the model is seen in Fig. 7 and the duct parameters used are given in Table 4.
Table 2

Frequencies in Hz for different wavenumbers in m�1

k Finnveden Coarse mesh Fine mesh

0 235.00 243.74 237.56

0 712.00 749.72 721.62

1 38.24 37.96 38.17

1 199.55 200.12 199.70

1 236.53 244.68 238.51

1 512.36 509.02 511.54

2 148.20 147.16 147.94

2 243.37 251.49 245.41

2 398.91 400.08 399.21

2 715.98 753.54 725.39
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Fig. 5. Dispersion relation for fluid-filled pipe; (–) Ref. [2]; (�) Waveguide–FE coarse mesh.
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Fig. 6. Mode in fluid (velocity potential) for wave at k ¼ 1m�1 and frequency f � 200Hz.

Table 3

Tabulated frequencies of lowest order wave in duct

Wavenumber k ðm�1Þ Frequency f (Hz)

0 0.00

1 29.90

2 111.08

3 205.61

4 267.68

5 299.40
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Fig. 7. Mesh of duct.

C.-M. Nilsson, S. Finnveden / Journal of Sound and Vibration 310 (2008) 58–76 69
The dispersion curves up to a wavenumber 5:5m�1 and frequency up to 760Hz are seen in Fig. 8. Waves
propagating from zero frequency are; the ‘plane’ fluid wave, indicated with an ‘F’ in Fig. 8; the vertical
and lateral ‘bending’ waves, indicated with ‘B1’ and ‘B2’, a torsional wave ‘T’, and the longitudinal wave
‘L’ in the shell. For reference, some values of the dispersion curve of the first bending wave, ‘B1’ are listed
in Table 3.
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Table 4

Parameters used for fluid-filled duct model

Young’s modulus E 210GPa

Poisson’s ratio n 0:3
Shell density r 7800kg=m3

Shell thickness h 5mm

Width w 0.22m

Height h 0.12m

Corner radius rc 0.01m

Fluid sound speed cf 1500m/s

Fluid density rf 1000kg=m3
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Fig. 8. Dispersion curves for fluid-filled duct; large black dots indicates tabulated values; letters indicates cross-sectional mode-shapes

shown in other figures at positions given by white circles; the thin dotted line indicate plane fluid waves in water and the thin solid line

indicate quasi-longitudinal waves in steel.
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At higher frequencies several more waves cut-on. The first three of these waves, indicated with ‘C1’, ‘C2’ and
‘C3’ in Fig. 8, cuts-on at about 230, 529 and 721Hz.

Mode-shapes, as given for the indicated points in Fig. 8, are seen in Figs. 9–17. Since there are no higher
order predominantly fluid waves in the considered frequency range, the fluid velocity potential follows
the displacement of the shell much according to Eq. (9). The velocity potential is thus plotted once only
(in Fig. 11).

A comparison between the dispersion curves for the duct and those for the pipe shows several similarities.
Predominantly longitudinal, torsional and bending waves are found in both Figs. 8 and 5.

The straight line, ‘Lp’, with the lowest incline in Fig. 5 corresponds to a predominantly longitudinal
structural wave in the pipe, much like the ‘L’ wave in the duct. The straight line, ‘Tp’, corresponds to the
torsional wave in the pipe. The dispersion curve for the predominantly fluid wave is seen as the third straight
line, ‘Fp’, from the bottom in Fig. 5. The dispersion curve for the predominantly ‘Euler-beam’ flexural waves,
‘N1p’, are seen as the first curved line in Fig. 5, whereas higher order, predominantly structural, waves ,‘N2’
and ‘N3’, are ‘cut-on’ at 235 and 712Hz. If j is an angular coordinate around the pipe, then the ‘N1’, ‘N2’ and
‘N3’ waves have a circumferential dependence, / cosðnjÞ for n ¼ 1, 2 and 3.

One difference is that, seemingly, a pipe has only four dispersion curves starting from the origin, whereas the
duct has five. This is due to the symmetry of a pipe cross-section which means that the two ‘Euler-beam’
flexural waves with displacements in the y- and z-directions cannot be separated. The same is true for the
‘N2p’ and ‘N3p’ waves. Hence there are actually two dots in Fig. 5 for each wavenumber for these waves.
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Fig. 10. Mode-shape of shell displacement at k ¼ 4:0m�1, f ¼ 267:68Hz, indicated with ‘B1’ in Fig. 8.

Fig. 11. Mode-shape of fluid velocity potential at k ¼ 4:0m�1, f ¼ 267:68Hz, indicated with ‘B1’ in Fig. 8.

Fig. 9. Mode-shape of shell displacement at k ¼ 4:0m�1, f ¼ 97:95Hz, indicated with ‘F’ in Fig. 8.
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Fig. 13. Mode-shape of shell displacement at k ¼ 0:5m�1, f ¼ 152:46Hz, indicated with ‘T’ in Fig. 8.

Fig. 12. Mode-shape of shell displacement at k ¼ 2m�1, f ¼ 179:42Hz, indicated with ‘B2’ in Fig. 8.
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A second difference is to be found when considering the speed of the predominantly fluid wave in the two
cases, i.e. the slope of the straight lines indicating the predominantly ‘plane’ fluid waves.

In Fig. 8, two lines indicating the ‘quasi-longitudinal’ wave in steel (solid) and plane fluid wave in water
(dashed) are shown together with the dispersion curves. It can be seen that the fluid coupling on the
longitudinal wave would be negligible for most practical applications whereas the coupling’s effect on the fluid
wave reduces the sound speed to about a tenth compared to the sound speed for a case with rigid walls. This
can be explained with a high flexibility of the duct walls when subjected to an internal pressure. In contrast, for
a perfect circular pipe, the displacement due to an increased pressure is resisted with the in-plane stiffness of
the shell and the walls then present a nearly rigid boundary for the fluid.

A third difference is that, for the pipe, as may be noticed from Fig. 5, the different dispersion curves always
cross each other. These crossings are related to orthogonal modes and are less often found in more general
waveguides. For a pipe, due to the axi-symmetry, the wave-shapes may be described with trigonometric
dependence about the circumference, and as a consequence, all the wave-shapes are clearly orthogonal.

For the duct case, the dispersion curves cross each other at the intersections (F,B2), (F,B1), (T,B2) , (L,C1)
and (L,C2). These crossings can also be explained by orthogonal wave shapes. This in turn is due to the fact
that the cross-section of the duct is symmetric both with respect to the y-axis and with respect to the z-axis.
Hence all waves are either symmetric or anti-symmetric with respect to these axes, very much like ordinary
modes. An anti-symmetric wave shape is clearly orthogonal to a symmetric wave shape. The symmetry and
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Fig. 15. Mode-shape of shell at k ¼ 0:2m�1, f ¼ 236:01Hz, indicated with ‘C1’ in Fig. 8.

Fig. 14. Mode-shape of shell at k ¼ 0:2m�1, f ¼ 165:18Hz, indicated with ‘L’ in Fig. 8.
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anti-symmetry of the waves are clearly seen in Figs. 9–15. However, when two waves have the same type of
symmetry or anti-symmetry, as is the case for the ‘T’ wave and the ‘C1’ wave pair and for the ‘L’ and ‘C3’
wave pair, the two dispersion curves ‘repel’ each other. This phenomena, often referred to as curve veering, is
reported in several papers e.g. Refs. [27,28].

The ‘L’ and ‘C3’ veering is further investigated in Figs. 18 and 19. It is noted that the modeshape of the ‘L’
wave at position ‘A’ (before the veering) is slightly different from that shown previously in Fig. 14. This
difference has however been found to be a gradual change rather than a phenomenon associated with the
curve crossing of ‘L’ with the dispersion curves ‘C1’ and ‘C2’. In contrast, the veering to the ‘C3’ curve
introduces a rapid change in the modeshape of the ‘L’ wave. In a frequency range close to the veering the ‘L’
and ‘C3’ waves have similar modeshapes, the only noticeably difference is that the ‘L’ wave have a significant
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Fig. 16. Mode-shape of shell at k ¼ 0:2m�1, f ¼ 529:16Hz, indicated with ‘C2’ in Fig. 8.

Fig. 17. Mode-shape of shell at k ¼ 0:2m�1, f ¼ 721:67Hz, indicated with ‘C3’ in Fig. 8.
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Fig. 18. Dispersion relation at curve veering.
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(Model A) (Model B)

(Model C) (Model D)

Fig. 19. Waves at the curve veering about 720Hz. Notations corresponding to Fig. 18; Mode ‘A’ at k ¼ 0:87m�1, f ¼ 704:61Hz; Mode

‘B’ at k ¼ 0:88m�1, f ¼ 741:52Hz; Mode ‘C’ at k ¼ 0:74m�1, f ¼ 724:53Hz; Mode ‘D’ at k ¼ 1:07m�1, f ¼ 721:89Hz.
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longitudinal displacement. At the veering this longitudinal displacement is transferred from the to ‘AC’ curve
to the ‘BD’ curve. The relative phase between the displacement within the cross-section and the longitudinal
displacement has also changed. It has been found that at position ‘A’ the x-displacements are almost in phase
with the sidewalls contraction, whereas at position ‘B’ they are in phase with the sidewalls expansion.

8. Conclusions

Waveguide finite elements for fluid and fluid–shell coupling are presented. Together with previously derived
plate-strip elements, which here have the in-plane motion enriched, equations for fully coupled fluid-filled
ducts and pipes can be found. Two examples, one for a pipe and one for a duct with close to rectangular cross-
section are presented. Dispersion curves and some wave-shapes for these examples are shown.

Comparing the dispersion curves for the pipe with those obtained from a previously presented method for
fluid-filled pipes, [2], it is found that the results agree well although the waveguide-FE approach has a slower
rate of convergence, which is explained by the linear approximating space used for the fluid elements. The
dispersion curves for the near rectangular water-filled duct provides a novel example of a result that would be
difficult to calculate with analytical methods. The same branches as for the circular pipe are recognized,
though, of course, the dispersion curves and the mode shapes are largely different. In particular, the almost
plane, predominantly fluid mode has a much lower speed of propagation because of the higher flexibility of the
almost flat shell wall.

The waveguide finite element method is a very useful tool for analysis of Vibro-acoustic motion and the
presented elements largely increase the class of structure for which it can be used. As an example, using the
elements presented here, and slightly modified versions of these, the authors are currently analysing
the response of car tyres, double walls, embedded rails, railway car structures and a loudspeaker.
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